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INVESTIGATION OF A SOLID BODY ROTARY NOTION AS A WHOLE* 

V.I. KLOKOV and K.V. KHOLSHEVNIKOV 

Behavior of rotary motions of a solid body with a fixed pointisinvestigatedthrough- 
out the whole of phase space (as a whole). The system of equations that determines 
the relation between the configuration space topology and the global properties of 
solid body motions is derived. 

The global qualitative investigation of rotary motions of solid bodies can beofinterest 
in at least two cases, viz. that of study of the evolution of rotary motions of celestial 
bodies, and when solving the problem of solid body stabilization. In both cases it is import- 
ant to know the pattern of motions throughout the phase space (for any initial conditionsf for 
infinitely long time intervals. Numerical methods,for example provide only a discrete number 
of trajectories over a limited time interval. In solving the problem of solid body stabiliza- 
tion (which may be considered as a problem of determining the moment that would ensure asymp- 
totic stabilization of the considered motion) we encounter the question of size ofsuchmotion 
asymptotic stability, and also whether it is possible to make that motion asymptoticallystable 
as a whole. These questions can be only answered by the global qualitative analysis of rotary 
motions of a solid body /l-4/ 

Let a solid body have a fixed point. It is convenient to define the position the coord- 
inate system attached to the solid body relative to the inertial coordinate system by the 
Rodrigues-Hamilton parameters X,,h,,h,,h, , or, what is the same, by the single quatemion 
I = (h,,h,.h,,h,). The same angular position of the body corresponds to quaternions a and A. 

By identifying two diametrically opposite points of the unit sphere ss = {hE R':h,% + Ala + 
ha+ hsa = if with h and --Awe obtain a real projective space pa . The quatemion components 
a,,a,,~,a8 are uniform coordinates of a point in Pa. The addition of solid body turns cor- 

responds to the multiplication of quaternion, and the respective group is isomorphic to the 
rotation group SO (3) which is the configuration space of the solid body. 

We represent the equation of motion of the solid body with a fixed point in the attached 
system of coordinates 

I dot& + o x IO = M (1) 

2a; = -olal -mOea, - o,a,, 2x; = w,a, + 63ghg - +a, 

2a; = 0*a8 + alas - asal, 2nd = asa0 + o,a, - 6Jla, 

(0 = (%I %, 4, a = (a,, aI, a,, ad, M = vf,, m, ~3) 

where I is the solid body inertia tensor, 0 is the angular velocity vector, a is the unit 
quaternion that defines the angular position of the attached coordinate system relative to 
the inertia system, andMis the moment of external forces. 

System (I.) represents a system of differential equations on the cylinder C = Ra x Pa = 
(z = (o,U : 0 E RS,hf P*}* 

Let us consider the motion of a solid body subjected to the action of potential, dissipa- 
tive, and gyroscopic forces. In that case the moment is defined by 

M=g+G+Q (2) 
where g = g(~,h) is the moment of definite dissipative forces such that og is negative de- 
finite relative to the angular velocity w; G = G(w,h) is the moment of gyroscopic forces 
whose power is OG = 0, and Q = Q(A) is the moment of potential forces. If U :Ps+R is 
a smooth potential function, then Q is calculated using formulas 

2Q1 = -a,G, +alu,-- a,u, +a,us (3) 

2Qa = -aOGB + a,G, - a,u, + a,u, 
w, = -a,u, i- a,u, - ad.4 4- alu, 

*Prikl.Matem.Mekhan.,46,No.6,pp.940-945,1982 

753 



754 

where Uj axe partial derivatives of the potential function U with respect to uniform coordin- 
ates A, of the real projective space. 

The system total energy dissipation total law 

dVidt = cog, V = (0, 10412 -t- u (A) (4) 

where V is the total mechanical energy consisting of the kinetic and potential energies, ap- 
plies for system (l)- (3). 

The motion of a solid body subjected to dissipative, potential, and gyroscopic forces 
was investigated in /5-77/ in which the problems of behavior of trajectories as a whole, and 
of constraints imposed by the configuration space topology on the over-all picture were not 
considered, 

The pattern of solid body motions throughout the phase space is defined by the following 
theorem. 

Theorem. 
lo. 

If the potential function U: P3+ R has nondegenerate critical points, then: 
There is a finite even number n,4 of equilibrium positions z,,,xr,.. .,x,-1 all of 

which are hyperbolic. Let W(xp) and W*(sk) be the stable and unstable manifold of the 
equilibrium position xX, and ui0 be the number of equilibrium positions for which the stable 
manifold dimension is 2, i.e. dimW(xX) = i,i = 3,4,5,6. The equalities 

aa 2 1, sbO - a$ > 0, alo - af + a80 ) 1, (5) 

ago - a,O+ abo - aao = 0 

then a ply. 
29 - Let u,<u,>... U,_l be the critical value of the potential function that corres- 

ponds to equilibrium positions xk (k= 0, 1, . . . . . n-f). Consider the aggregate of sets sG?z= 
{I= C: V(x)<Z), 8, = lim ai= C. Any motion of the solid body that begins in Qt, remainsin 
SL1 and approaches to one of the equilibrium positions xkE PI. In particular, every motion 

that begins in Qo, approaches G, (nu, defines the lower bound of the asymptotic stability re- 
gion for the equilibrium position x0); every motion that begins in &J, approaches either $0 
or x1, etc. 

For the determination of all equilibrium positions of a solid body it is, evidently, nec- 
essary and sufficient to find all critical points of the potential function U:P3+R. Using 
the Morse theory /2/ it is possible to establish the relation between the number and indices 
of critical points of function which is smooth in Pa, and the topological invariants of the 
real projective space. If the critial points of U are nondegenerate, then they are isolated 
and, by virtue of compactness of P’, their number is finite. 

Let ci be the number of critical points with index i = 0,1, 2,3, and in particular co 
and cg be the number maxima and minima of U, respectively. Taking into account that all 
nontrivial Betti numbers in modulo two of the manifold P3 are equal unity, we obtain the 
Morse inequalities 

co >l, Cl - c,)O, c,--c,+c,)l, c,--c,+c,--cc,=0 (6) 

from which immediately follows that the number of equilibrium positions of a solid body in the 
field of potential, dissipative, and gyroscopic forces is always even and not less than four. 

The properties of solid body motionsinthe equilibrium position neighborhood .x is complet- 
ely determined by the index i of the respective critical point. In the critical point neigh- 
borhood the potential function U is represented by a nondegenerate quadratic form relative 
to local coordinates with a negative inertia index i. Analysis of the linearized system in 
the equilibrium position neighborhood shows that it has i eigenvalues with positive real part, 
and6 - i with negative one. Hence the equilibrium position is a multidimensional hyperbolic 
point for which the unsteady manifold W* (z) dimensional is equal i, while that of the 
stable manifold W(z) is equal 6 - i. Hence ci = a+&', and the validity of inequalities (5) 
follows from inequalities (6). 

The second part of the theorem follows from the known statement of the theoryofstability 
/8/ that every motion of the system approaches the maximum invariant set which converts to 
zero the left-hand side of og of formula (4). In the case of total dissipation the set is 
exhausted by the equilibrium positions. 

The theorem provides the lower bound of the number of critical points for any arbitrary 
smooth function. In applied problems the potential function can be approximated by the poly- 
nomial functions 

9k 

(7) 
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where summation is carriedoutover indices that satisfy the condition i+j+r+ t= 2k. 

Let us estimate the limits of variation of the polynomial function critical pointsnumber. 
According to the theorem proof there exists a one-to-one correspondence between the function 
critical points and the real solutions of the system, which is obtained by equation to zero 
the right-hand sides of Eqs.(3). Each equation of that homogeneous system (we shall call it 
system A) is an even form of order 2k. It real solution normalized with respect to unity 
corresponds on Pa to a critical point of function 'u. By the Bezout theorem the maximumnumber 
of isolated complex solutions of the system of homogeneous algebraic equations is equal 8P. 
An exact estimate of the number of real solutions can be obtained using the following property 
/of the problem/. Solutions of the system can be separated in two groups: one corresponding 
to the condition of proportionality of gradU and h (these can be real and complex solutions) 
the second consisting of extraneous complex roots satisfying the condition hoP+h1P+5z~+ h,g ~0. 
It is important to note that the extraneous complex roots satisfy a system of equations that 
is independent of system A and that a continuous variation of the form coefficients cannot 
transform them into real ones. Thus, when some form of order 2k for which system A has the 
maximum possible number of solutions V+ Y= 8k3, where u is the number of real solutions and 
II is the number of extraneous complex solutions, then u is the maximum number of real solu- 

tions of system A for an arbitrary form of order 2k. Then, if the potential function is a 
quadratic form, the body has four equilibrium positions. 

Among fourth order forms form U = ho'+ &b+&a+h$has the indicated property. In that 
case system A has the maximum number of roots equal 64 of which 40 are real and 24 are extra- 
neous complex. If the potential function is a fourth order form in the Rodrigues-Hamilton 
parameters, the number of equilibrium positions may reach forty. For the gravitation poten- 
tial which is a fourth order form that number is 24. Generally, the construction of the 
required form is complicated. 

Thus a solid body in a field of potential, dissipative, and gyroscopic forces has an 
asymptotically stable equilibrium position. This enables the solution of the problem of solid 
body stabilization /5-7/. However it is not possible to make this equilibrium position 
stable as a whole by using the indicated forces , since there are always at least three saddle 
type equilibrium positions of various types. 

Let us show that, when a reasonably arbitrary moment acts on the body, there are inequal- 
ities similar to (5) generally apply. 

The dynamic system specified on the cylinder C= RS X P3,which defines the motions of 
a solid body, can have a number of singularities which make its investigation difficult, and 
are of no interest in the present analysis. First, owing to the noncompactness of C, there 
may be trajectories moving to infinity. For instance, a solid body may reach arbitrarilyhigh 
angular velocities under the action of a constant moment. Such motion is impossible in prac- 
tice owing to limited on-board energy resources. Second, the behavior of a six-dimensional 
dynamic system can be very complex, for example, hetero- and homoclinal structures may appear. 
To eliminate from the analysis these types of behavior we impose on the dynamic system a 
number of constraints. 

Let the solid body be subjected to the action of moment M(o,h) which is smooth on 
R3 X P3 and satisfies the following conditions: 

a) At fairly high angular velocities o the quantity oM is negative, i.e., when consider- 
ing a dynamic system on a manifold with boundary e3 X Ps = {o E e3, h E Pa), where e3 is a 
sphere of fairly large radius, the vector field at the boundary of that manifold a(e3 X P3) = 

S* X Ps is assumed to be directed transversally inward the manifold. 
b) The dynamic system is a generalized Morse-Smale system, i.e. it possesses the follow- 

ing properties: 
bl) the set of nonstraying trajectories consists of a finite number of i-dimensional 

periodic surfaces &, pa,. . ., (in (an i-dimensional periodic surface is the invariant subset 
homeomorphic to the i-dimensional torus T', in particular the zero-dimensional periodic sur- 
face - a fixed point, or an equilibrium position-one-dimensional periodic surface - a closed 
trajectory, a two dimensional periodic surface - a two-dimensional torus which represent the 
union of trajectories); 

b2) all p are hyperbolic; 
b3) there are no closed cycles of trajectories among pi, more exactly, a sequence of 

indices i- il, i,, . . ., ir = i, such that W*(fllj) n W(pi,,) # 0 for I<l\<k, whereW(&), W* (pi), 
is a stable and unstable manifold for pi, does not exist. 

The described dynamic system is defined on the manifold e3.>i. Pa with a boundary $' X Pa. 
To use the Morse-Smale inequalities it is necessary to get rid of the boundary. We join 
es x Ps with the second specimen of aJX Ps along the border Sz X Ps, and obtain the compact 
manifold D without boundary. Using standard procedures of differential topology/9/, it is 
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possible, first to make D smooth and, second, calculate the homology groups D, and obtain 
Betti numbers modulo two 

R i,.l,z = 1, R, = 2, R,>,,s = 1 (8) 

It is now necessary to complete the definition of the vector field on the second speci- 
men of e3 X P3. We assume that a vector field with four critical points xi such that dim 

W(z,) = i, i = 0, 1, 2,3, is specified on it. For example, it is possible to assume that the 
vector field direction is opposite to that defined in the first part of this paper for the 
vector field of a dissipative dynamic system with the lowest possible number of fixed points. 
Smoothness of the gluid joint of vector fields of the first and second specimen of e.l x P3 
can be achieved by the usual procedure of small movement of the vector field in the neighbor- 
hood the gluid joint of S* X ps, using the transversality of vector fields at the boundary. 

We use the generalized Morse-Smale inequalities for dynamic systems that are generally 
of the form 

where RI is the i-th Betti number in modulo two of the manifold D,%(D) is Euler's character- 
istic of I), aIo is the number of fixed points fi such that dim W(b) =j, al1 the number of 
closed trajectories of 8 such that W(B) = j, and n,' the number of i--dimensionalperiodic 
surfaces of p such that dim W(p) = j and 4ji = 0 for j<i. 

Taking into account that the dynamic system has already four fixed points xi. on D, we 
obtain 

u,O -t ad + usa 4 u.2 -t- ad + a2 > 1 

a&* - a,@ + ao’ + (Q&2 + oe”) + (uf.3 + 2d) + fus’ -I- 3d) + 

(d + ‘w) 2 0 

ail0 - aSo + aeo + ad1 -i- (a2 + aA -I- (a2 + 2a2 + ad31 4- 

(a44 + 3u54 + 3as4) + (hf.6 + 6Qa’) ;k 1 

aSO - ~0 + uoo - ugo $ as1 + (uJz + ada) + (aSS + 2a4” -+ 

aSa) + (3a,* + 3an4 -t- a.3’) + 
(6~~~ + 44J') > 0 

(9) 

aso - alo + u10 - ubo Jr a$ + %I 4- ($2” + a,‘) + (2s~~ + 
ah5) + (3uf + aeP) 47 (h,” + a2 1 2 0 

aI* - aso + a,* - ado + aJo - aeo + (Ix1 i- a22 + us3 f 

aa _t a2 >O 

~0 - ulo + uzo - aso + u10 - abo $ ago = 0 

The following statements follow from inequalities (9). If a solid body has only equili- 
brium positions, their number is not less than four; aho>, f,k=6,5,4,3; if there are only 
closed trajectories, their number is not less than two:a,,'> $,a,'> 1; when there are only 
two-dimensional tori, their number is not less than two: ad2> 1,aa2 Jr as’>l; and when there are 
only invarient i-dimensional tori: (i = 3,4, 5), at least one of them is stable: a$)/l. 

Thus in the case of a smooth moment the system of inequalities (9) define natural top- 
olosical constraints on the dvnamics of solid body rotations. Similar relations can, probably, 
be found for relay systems frequently encountered-in applied mechanics. 
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